Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 1): 130514, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423440

RESUMO

This paper reports the synthesis, characterization, and properties of chitosan films (CHI) grafted with a natural antifungal agent with the aim of developing active films of natural origin to prevent post-harvest losses of citrus fruit. The antifungal agent was prepared by fermentation using lemon peel (AntiFun-LM), a citrus waste, and grafted on chitosan using different coupling agents (CHI/AntiFun-LM). Bioactive films were prepared by solvent casting. FTIR-ATR and ToF-SIMS analyses provided compelling evidence of the successful grafting process. TGA-DSC demonstrated that the films are stable after grafting. SEM studies showed the continuous and compact surface of the films. WCA measurements proved that CHI/AntiFun-LM films are more hydrophilic than CHI films. Moreover, the CHI/AntiFun-LM films showed stronger UV shielding effect when compared to CHI. The biological evaluation demonstrated that CHI/AntiFun-LM films gained considerable antifungal properties against most fungi responsible for post-harvest decay. Cytotoxicity tests showed that CHI/AntiFun-LM films did not cause any toxic effect against L929 fibroblasts. This study highlights the great potential of chemical grafting of antifungal agents produced from citrus waste to chitosan and preparation of natural-based films to act as a powerful alternative in post-harvest protection of citrus fruit in a perspective of circular economy.


Assuntos
Quitosana , Citrus , Quitosana/química , Antifúngicos/farmacologia , Antifúngicos/química , Citrus/química
2.
ACS Appl Bio Mater ; 6(11): 4952-4960, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37902234

RESUMO

Stable and uniform layers of protein molecules at the surface are important to build passive devices as well as active constructs for smart biointerfaces for a large number of biomedical applications. In this context, a strategy to build-up surfaces able to anchor protein molecules on specific and controlled surface sites has been developed. Human serum albumin (HSA) has been chosen as a model protein due to its important antithrombogenic properties and its features in cell response highly valuable for in vivo devices. Uniform self-assembled monolayers of 2,2':6'2″-terpyridines (SAM), whose sites were further employed to chelate copper and iron ions, forming SAM-Cu(II) and SAM-Fe(II) complexes, have been developed. The effect of two metal cations on the physicochemical features of SAM, including thickness, Young's modulus, and tip-monolayer adhesion factors, has been investigated. Protein adsorption at different concentrations showed that the copper ion-templated surfaces exhibit highly specific mass uptake, kinetic behavior, and recognition and anchoring of HSA molecules owing to the coordination sphere of the different cations. The results pave the way to the development of a more general strategy to obtain ordered and density-tuned arrays of specific metal cations, which in turn would drive the anchoring of precise proteins for different biological functions.


Assuntos
Cobre , Albumina Sérica Humana , Humanos , Adsorção , Transporte Biológico , Cátions
3.
Materials (Basel) ; 16(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37241496

RESUMO

Researchers in the field of tissue engineering are always searching for new scaffolds for bone repair. Polyetheretherketone (PEEK) is a chemically inert polymer that is insoluble in conventional solvents. PEEK's great potential in tissue engineering applications arises from its ability to not induce adverse reactions when in contact with biological tissues and its mechanical properties, which are similar to those of human bone. These exceptional features are limited by the bio-inertness of PEEK, which causes poor osteogenesis on the implant surface. Here, we demonstrated that the covalent grafting of the sequence (48-69) mapped on the BMP-2 growth factor (GBMP1α) significantly enhances the mineralization and gene expression of human osteoblasts. Different chemical methods were employed for covalently grafting the peptide onto 3D-printed PEEK disks: (a) the reaction between PEEK carbonyls and amino-oxy groups inserted in the peptides' N-terminal sites (oxime chemistry) and (b) the photoactivation of azido groups present in the peptides' N-terminal sites, which produces nitrene radicals able to react with PEEK surface. The peptide-induced PEEK surface modification was assessed using X-ray photoelectron measurements, while the superficial properties of the functionalized material were analyzed by means of atomic force microscopy and force spectroscopy. Live and dead assays and SEM measurements showed greater cell cover on functionalized samples than the control, without any cytotoxicity induction. Moreover, functionalization improved the rate of cell proliferation and the amount of calcium deposits, as demonstrated by the AlamarBlue™ and alizarin red results, respectively. The effects of GBMP1α on h-osteoblast gene expression were assayed using quantitative real-time polymerase chain reaction.

4.
Materials (Basel) ; 16(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903190

RESUMO

The surface properties of drug containers should reduce the adsorption of the drug and avoid packaging surface/drug interactions, especially in the case of biologically-derived products. Here, we developed a multi-technique approach that combined Differential Scanning Calorimetry (DSC), Atomic Force Microscopy (AFM), Contact Angle (CA), Quartz Crystal Microbalance with Dissipation monitoring (QCM-D), and X-ray Photoemission Spectroscopy (XPS) to investigate the interactions of rhNGF on different pharma grade polymeric materials. Polypropylene (PP)/polyethylene (PE) copolymers and PP homopolymers, both as spin-coated films and injected molded samples, were evaluated for their degree of crystallinity and adsorption of protein. Our analyses showed that copolymers are characterized by a lower degree of crystallinity and lower roughness compared to PP homopolymers. In line with this, PP/PE copolymers also show higher contact angle values, indicating a lower surface wettability for the rhNGF solution on copolymers than PP homopolymers. Thus, we demonstrated that the chemical composition of the polymeric material and, in turn, its surface roughness determine the interaction with the protein and identified that copolymers may offer an advantage in terms of protein interaction/adsorption. The combined QCM-D and XPS data indicated that protein adsorption is a self-limiting process that passivates the surface after the deposition of roughly one molecular layer, preventing any further protein adsorption in the long term.

5.
Biomolecules ; 13(2)2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36830615

RESUMO

Polyetheretherketone (PEEK) is a thermoplastic polymer that has been recently employed for bone tissue engineering as a result of its biocompatibility and mechanical properties being comparable to human bone. PEEK, however, is a bio-inert material and, when implanted, does not interact with the host tissues, resulting in poor integration. In this work, the surfaces of 3D-printed PEEK disks were functionalized with: (i) an adhesive peptide reproducing [351-359] h-Vitronectin sequence (HVP) and (ii) HVP retro-inverted dimer (D2HVP), that combines the bioactivity of the native sequence (HVP) with the stability toward proteolytic degradation. Both sequences were designed to be anchored to the polymer surface through specific covalent bonds via oxime chemistry. All functionalized PEEK samples were characterized by Water Contact Angle (WCA) measurements, Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS) to confirm the peptide enrichment. The biological results showed that both peptides were able to increase cell proliferation at 3 and 21 days. D2HVP functionalized PEEK resulted in an enhanced proliferation across all time points investigated with higher calcium deposition and more elongated cell morphology.


Assuntos
Polímeros , Vitronectina , Humanos , Polietilenoglicóis/química , Cetonas/química , Peptídeos , Propriedades de Superfície
6.
Langmuir ; 38(40): 12281-12291, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36172718

RESUMO

The lack of methodologies which enable us to measure forces acting between nanomaterials is one of the factors limiting the full comprehension of their behavior and their more effective exploitation in new devices. Here we exploit the irreversible adsorption of surfactant-decorated nanoparticles at the air/water interface to investigate interparticle forces and the effect of the surfactant structure on them. We measured the interparticle repulsive forces as a function of the modulation of the interparticle distance by simultaneously performing compression isotherms and the grazing incidence small-angle X-ray scattering (GISAXS) structural characterization of the monolayers at water-vapor interfaces. Our results demonstrate that the short-range interparticle forces are strongly affected by the presence of the organic ligands, which are shown to be able to influence the interparticle repulsions even when added in micromolar amounts. In particular, we demonstrate the predominant steric nature of short-range forces, which are accounted for in terms of the compression-induced stretched-to-coiled conformational transition of the ligand hydrophobic tail.

7.
Polymers (Basel) ; 14(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808689

RESUMO

Polyelectrolytes assembled layer-by-layer (PEMs) are commonly used as functional coatings to build-up biological interfaces, particularly suitable as compatible layers for the interaction with a biological medium, providing suitable conditions to promote or prevent cell seeding while maintaining the phenotype. The proper assessment of the biocompatibility of PEMs and the elucidation of the related mechanisms are therefore of paramount importance. In this study, we report in detail the effect of two different PEM endings, polystyrene sulfonate (PSS) and polyethylenimine (PEI), respectively, on the cell adhesion, growth, and viability of human bone mesenchymal stromal cells (MSCs). The results have shown that PSS-ended substrates appear to be the most suitable to drive the cell adhesion and phenotype maintenance of MSCs, showing good biocompatibility. On the contrary, while the cells seem to adhere more quickly and strongly on the PEI-ended surfaces, the interaction with PEI significantly affects the growth and viability, reducing the cell spreading capability, by sequestering the adhesion molecules already in the very early steps of cell-substrate contact. These results point to the promotion of a cytostatic effect of PEI, rather than the often-claimed cytotoxicity.

8.
Gels ; 8(2)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35200494

RESUMO

Medical applications stimulate the need for materials with broad potential. Chitosan, the partially deacetylated derivative of chitin, offers many interesting characteristics, such as biocompatibility and chemical derivatization possibility. In the present study, porous scaffolds composed of electrospun interwoven nanometric fibers are produced using chitosan or chitosan functionalized with aliphatic chains of twelve, fourteen or sixteen methylene groups. The scaffolds were thoroughly characterized by SEM and XPS. The length of the aliphatic tail influenced the physico-chemical and dynamic mechanical properties of the functionalized chitosan. The electrospun membranes revealed no interaction of Gram+ or Gram- bacteria, resulting in neither antibacterial nor bactericidal, but constitutively sterile. The electrospun scaffolds demonstrated the absence of cytotoxicity, inflammation response, and eryptosis. These results open the door to their application for blood purification devices, hemodialysis membranes, and vascular grafts.

9.
Plants (Basel) ; 10(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34834815

RESUMO

(1) Background: This study was aimed at determining the in vitro inhibitory effect of new natural substances obtained by minimal processing from shrimp wastes on fungi and oomycetes in the genera Alternaria, Colletotrichum, Fusarium, Penicillium, Plenodomus and Phytophthora; the effectiveness of the substance with the highest in vitro activity in preventing citrus and apple fruit rot incited by P. digitatum and P. expansum, respectively, was also evaluated. (2) Methods: The four tested substances, water-extract, EtOAc-extract, MetOH-extract and nitric-extract, were analyzed by HPLC-ESI-MS-TOF; in vitro preliminary tests were carried out to determine the minimal inhibitory/fungicidal concentrations (MIC and MFC, respectively) of the raw dry powder, EtOAc-extract, MetOH-extract and nitric-extract for each pathogen. (3) Results: in the agar-diffusion-assay, nitric-extract showed an inhibitory effect on all pathogens, at all concentrations tested (100, 75, 50 and 25%); the maximum activity was on Plenodomus tracheiphilus, C. gloeosporioides and Ph. nicotianae; the diameters of inhibition halos were directly proportional to the extract concentration; values of MIC and MFC of this extract for all pathogens ranged from 2 to 3.5%; the highest concentrations (50 to 100%) tested in vivo were effective in preventing citrus and apple fruit molds. (4) Conclusions: This study contributes to the search for natural and ecofriendly substances for the control of pre- and post-harvest plant pathogens.

10.
Nanomaterials (Basel) ; 11(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202150

RESUMO

The Spontaneous Symmetry Breaking (SSB) phenomenon is a natural event in which a system changes its symmetric state, apparently reasonless, in an asymmetrical one. Nevertheless, this occurrence could be hiding unknown inductive forces. An intriguing investigation pathway uses supramolecular aggregates of suitable achiral porphyrins, useful to mimic the natural light-harvesting systems (as chlorophyll). Using as SSB probe supramolecular aggregates of 5,10,15,20-tetrakis[p(ω-methoxypolyethyleneoxy)phenyl]porphyrin (StarP), a non-ionic achiral PEGylated porphyrin, we explore here its interaction with weak asymmetric thermal gradients fields. The cross-correlation of the experimental data (circular dichroism, confocal microscopy, atomic force microscopy, and cryo-transmission electron microscopy) revealed that the used building blocks aggregate spontaneously, organizing in flag-like structures whose thermally-induced circular dichroism depends on their features. Finally, thermal gradient-induced enantioselectivity of the supramolecular flag-like aggregates has been shown and linked to their size-dependence mesoscopic deformation, which could be visualized as waving flags in the wind.

11.
Nanoscale Adv ; 3(12): 3605-3614, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36133720

RESUMO

This paper reports atomic force microscopy results and molecular dynamics simulations of the striking differences of long-term self-organization structures of negatively charged (AcA4)2KD (double tail) and AcA4D (single tail) peptides, respectively, forming micrometer-long, linearly ordered ribbon-like structures and nanometer-sized, unstructured, round-shaped aggregates. The subsequent formation steps of the long-range nanoribbons, experimentally observed only for the "double tail" (AcA4)2KD peptide, are analyzed in detail, showing that the initial "primary" unstructured round-shaped aggregates progressively evolve into longer nanofilaments and into micrometer-long, network-forming nanoribbon moieties. In particular, the long-range self-organization of the "double tail" peptides appears to be closely related to electrostatically driven diffusional motions of the primary aggregates and nanofilaments. The diffusional freedom degrees are prompted by the formation of a dynamic ternary air/liquid/substrate interface, due to the water evaporation process from the ultrathin films of the peptide solution cast onto a solid mica substrate. Overall, the initial aggregation of unstructured round-shaped moieties, for both the peptides, can be seen as an entropy-driven process, involving the intra- and intermolecular interactions of hydrophobic parts of the peptides, while the further formation of long nanoribbons, only for "double tail" peptides, can be viewed in terms of an enthalpy-driven process, mainly due to the predominant electrostatic interactions between the charged heads of the interacting peptides. The role of the solid-liquid interface, as the locus of the enthalpy-driven linear organization, is also highlighted.

12.
ACS Biomater Sci Eng ; 6(2): 1154-1164, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33464835

RESUMO

Hydrogels produced by self-assembling peptides are intrinsically biocompatible and thus appropriate for many biomedical purposes. Their application field may be even made wider by reducing the softness and improving the hydrogel mechanical properties through cross-linking treatments. To this aim, modifications of EAK16-II sequence by including Cys residues in its sequence were here investigated in order to obtain hydrogels cross-linkable through a disulfide bridge. Two sequences, namely, C-EAK and C-EAK-C, that contain Cys residues at the N-terminus or at both ends were characterized. Fiber-forming abilities and biological and dynamic mechanical properties were explored before and after the oxidative treatment. In particular, the oxidized version of C-EAK presents a good cell viability and sustains osteoblast proliferation. Furthermore, molecular dynamics (MD) simulations on monomeric and assembled forms of the peptides were performed. MD simulations explained how a specific Cys functionalization was better than the other one. In particular, the results suggested that EAK16-II functionalization with a single Cys residue, instead of two, together with biocompatible cross-linking may be considered an intriguing strategy to obtain a support with better dynamic mechanical properties and biological performances.


Assuntos
Hidrogéis , Peptídeos , Sobrevivência Celular , Dissulfetos , Simulação de Dinâmica Molecular
13.
Soft Matter ; 15(42): 8475-8482, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31603450

RESUMO

The control of self-assembly and the related interactions among nanoparticles (NPs) at liquid surfaces and interfaces represents a stimulating experimental challenge to fully understand the behaviour of nano-colloids confined in a 2D asymmetric environment, in turn prompting the building of novel NP-based functional monolayers. Here, we first investigate the structural evolution of a model mixed surfactant/NP monolayer as a function of the surfactant/NP bulk ratio finding that, at ratios lower than 20, the adsorption at the air/water interface of surfactant-decorated NPs is dominant. We then employed these 2D nano-colloidal monolayers as model systems for grazing incidence small angle X-ray scattering measurements, performed using synchrotron radiation, while compressing the monolayers in a Langmuir trough. The simultaneous determination of the compression work and the related reduction of the inter-particle distance at the interface enabled, for the first time, the quantitative characterization of the forces acting between adsorbed NPs, as well as their dispersion law with the inter-particle distance. Distinct surfactant reorganization processes are proposed to interpret the measured forces and the characteristic inter-particle distances.

14.
Sci Rep ; 9(1): 5583, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944410

RESUMO

Damage of enteric neurons and partial or total loss of selective neuronal populations are reported in intestinal disorders including inflammatory bowel diseases and necrotizing enterocolitis. To develop three-dimensional scaffolds for enteric neurons we propose the decoration of ionic-complementary self-assembling peptide (SAP) hydrogels, namely EAK or EAbuK, with bioactive motives. Our results showed the ability of EAK in supporting neuronal cell attachment and neurite development. Therefore, EAK was covalently conjugated to: RGD, (GRGDSP)4K (fibronectin), FRHRNRKGY (h-vitronectin, named HVP), IKVAV (laminin), and type 1 Insulin-like Growth Factor (IGF-1). Chemoselective ligation was applied for the SAP conjugation with IGF-1 and the other longer sequences. Freshly isolated murine enteric neurons attached and grew on all functionalized EAK but IGF-1. Cell-cell contact was evident on hydrogels enriched with (GRGDSP)4K and HVP. Moreover (GRGDSP)4K significantly increased mRNA expression of neurotrophin-3 and nerve growth factor, two trophic factors supporting neuronal survival and differentiation, whereas IKVAV decoration specifically increased mRNA expression of acetylcholinesterase and choline acetyltransferase, genes involved in synaptic communication between cholinergic neurons. Thus, decorated hydrogels are proposed as injectable scaffolds to support in loco survival of enteric neurons, foster synaptic communication, or drive the differentiation of neuronal subtypes.


Assuntos
Sistema Nervoso Entérico/metabolismo , Neurônios/metabolismo , Peptídeos/metabolismo , Animais , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Fator de Crescimento Neural/metabolismo , Neurogênese/fisiologia , Neurotrofina 3/metabolismo , RNA Mensageiro/metabolismo
15.
Langmuir ; 35(14): 4813-4824, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30864802

RESUMO

The cyclic change of structure, thickness, and density, with pH switching from acidic (pH = 3) to basic (pH = 11) condition, has been revealed for chemisorbed monolayers of the peptide Lipo-Aib-Lys-Leu-Aib-Lys-Lys-Leu-Aib-Lys-Ile-Lol, a trichogin GA IV-analogue carrying Lys residues instead of Gly ones at positions 2, 5, 6, and 9, while a homologous peptide not containing Lys residues does not show any response to pH changes. Experimental and theoretical results, obtained by means of quartz crystal microbalance with dissipation monitoring, surface plasmon resonance, nanoplasmonic sensing technique, Fourier transform infrared-reflection attenuated spectroscopy and dynamic force spectroscopy, and molecular dynamics simulations provide detailed information on the overall monolayer structure changes with pH, including the analysis of the intra- and interchain peptide dynamics, the structure of the peptide layer/water/solid interface, as well as the position and role of solvation and nonsolvation water. The observed stimuli-responsive behavior of L1 peptide monolayers is accounted in terms of the occurrence of a pH-induced wetting/dewetting process, due to the pH-induced switching of the hydrophilic character of charged lysine groups to hydrophobic one of the same uncharged groups, along the peptide chain. This behavior in turn promotes the collective change of the aggregation state of the peptide chains. The present results may pave the way to critically reexamine the mechanism of stimuli-responsive systems.


Assuntos
Peptídeos/química , Adsorção , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície
16.
Phys Chem Chem Phys ; 20(48): 30312-30320, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30484449

RESUMO

Molecular communication exploits functional molecular systems travelling along fluid media to deliver messages encoded as concentration pulses, e.g. molecular bits. As the bits are naturally broadened by diffusion, limiting the distance along which information can be transferred, by careful design and optimization of the molecular messengers, is required. A new paradigm, exploiting the chemical reactivity of a suitable molecular messenger, has been developed to achieve long range information transfer with variable transmitter-receiver distances. The experimental results and theoretical simulations, carried out by using fluorescent molecules switched by pH-driven hydrolysis, are reported here. In particular, we simulated the information transport process by using numerical solutions of differential equations governing information swapping and we show that by exploiting the reactivity of the chemical messenger, a stable signal at the receiver is maintained within a wide range of distance. This theoretical prediction was fully experimentally verified by using a prototypal molecular communication platform.

17.
Langmuir ; 34(39): 11706-11713, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30199641

RESUMO

We have developed a novel approach enabling us to follow and facilitate the formation of two-dimensional coordination polymer monolayers directly at the air/water interface without the need of complex instrumentation. The method is based on the use of a surface active ligand that, when spread at the air/water interface, progressively undergoes hydrolysis with consequent gradual decrease in surface pressure. Notably, if the aqueous subphase contains metal ions capable of coordinating the ligand, coordination competes with hydrolysis, resulting in a lower surface pressure decrease. As a consequence, the formation of the coordination polymer monolayer can be verified simply by surface pressure measurements. Competition between hydrolysis and coordination was investigated as a function of the main experimental parameters affecting the two reactions, enabling the formation of stable coordination polymer monolayers with controlled density. Finally, the formation of continuous rigid 2D layers was confirmed by compression isotherms and ex situ morphological characterization. This work will simplify the verification of coordination polymer monolayer formation; thus, it will boost the synthesis of novel and innovative 2D materials.

18.
Nanoscale ; 10(16): 7544-7555, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29637964

RESUMO

Experimental and theoretical reports have shown that nanostructured surfaces have a dramatic effect on the amount of protein adsorbed and the conformational state and, in turn, on the performances of the related devices in tissue engineering strategies. Here we report an innovative method to prepare silica-based nanostructured surfaces with a reproducible, well-defined local curvature, consisting of ordered hexagonally packed arrays of curved hemispheres, from nanoparticles of different diameters (respectively 147 nm, 235 nm and 403 nm). The nanostructured surfaces have been made chemically homogeneous by partially embedding silica nanoparticles in poly(hydroxymethylsiloxane) films, further modified by means of UV-O3 treatments. This paper has been focused on the experimental and theoretical study of laminin, taken as a model protein, to study the nanocurvature effects on the protein configuration at nanostructured surfaces. A simple model, based on the interplay of electrostatic interactions between the charged terminal domains of laminin and the nanocurved charged surfaces, closely reproduces the experimental findings. In particular, the model suggests that nanocurvature drives the orientation of rigid proteins by means of a "geometrical resonance" effect, involving the matching of dimensions, charge distribution and spatial arrangement of both adsorbed molecules and adsorbent nanostructures. Overall, the results pave the way to unravel the nanostructured surface effects on the intra- and inter-molecular organization processes of proteins.


Assuntos
Nanoestruturas , Proteínas/análise , Dióxido de Silício , Adsorção , Laminina/análise , Propriedades de Superfície
19.
J Phys Chem Lett ; 8(16): 3861-3866, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28767249

RESUMO

The modeling and realization of an effective communication platform for long-range information transfer is reported. Messages are encrypted in molecular bits by concentration pulses of fluorescent carbon quantum dots having self-quenching emission that dynamically depends on the concentration pulses. Messages are transferred along longer paths when received and decoded by means of dynamical emission response with respect to the ones encoded by absorbance scaling linearly with messenger concentration. These results represent a significant breakthrough in view of the futuristic development of a nonspecific molecular communication platform to encode and transfer information in multiple fluid environments, ranging from physiological to industrial ones.

20.
Colloids Surf B Biointerfaces ; 157: 473-480, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28654884

RESUMO

Staphylococcus aureus is a major human pathogen causing health care-associated and community-associated infections. Early diagnosis is essential to prevent disease progression and to reduce complications that can be serious. In this study, we selected, from a 9-mer phage peptide library, a phage clone displaying peptide capable of specific binding to S. aureus cell surface, namely St.au9IVS5 (sequence peptide RVRSAPSSS).The ability of the isolated phage clone to interact specifically with S. aureus and the efficacy of its bacteria-binding properties were established by using enzyme linked immune-sorbent assay (ELISA). We also demonstrated by Western blot analysis that the most reactive and selective phage peptide binds a 78KDa protein on the bacterial cell surface. Furthermore, we observed selectivity of phage-bacteria-binding allowing to identify clinical isolates of S. aureus in comparison with a panel of other bacterial species. In order to explore the possibility of realizing a selective bacteria biosensor device, based on immobilization of affinity-selected phage, we have studied the physisorbed phage deposition onto a mica surface. Atomic Force Microscopy (AFM) was used to determine the organization of phage on mica surface and then the binding performance of mica-physisorbed phage to bacterial target was evaluated during the time by fluorescent microscopy. The system is able to bind specifically about 50% of S. aureus cells after 15' and 90% after one hour. Due to specificity and rapidness, this biosensing strategy paves the way to the further development of new cheap biosensors to be used in developing countries, as lab-on-chip (LOC) to detect bacterial agents in clinical diagnostics applications.


Assuntos
Técnicas Biossensoriais/métodos , Biblioteca de Peptídeos , Staphylococcus aureus , Ensaio de Imunoadsorção Enzimática , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...